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ABSTRACT 

In an industrial setting, data is often limited in quantity, and 

its quality can be inconsistent. Yet, the potential of Machine 

Learning (ML) based prognostics and health monitoring 

(PHM) tools to enable risk-optimized operations and 

maintenance relies heavily on these two aspects. In practice, 

to bridge this gap, successful developments heavily rely on 

the introduction of process/domain expertise as a prior, 

enabling sufficiently accurate predictions, while enhancing 

their interpretability.  

A key challenge in development involves translating the 

experience and process knowledge of maintenance 

personnel, development, and service engineers into a data 

structure. This structure must not only capture the vast 

diversity and variability of the expertise but also render this 

knowledge accessible for various data-driven algorithms. 

These challenges result in data models that are heavily 

tailored towards a specific application and the failure modes 

the development team aims to detect and predict via ML. The 

resulting lack of a standardized modelling approach limits 

developments’ extensibility to new failure modes, their 

transferability to new applications, and it inhibits the 

utilization of standard data management and MLOps tools, 

further increasing the burden on the development team. In 

effect, the resulting high development and industrialization 

costs limit the economic utility of data-driven PHM tools to 

use cases with an exceptionally high economic risk. 

DeepFMEA, draws inspiration from the Failure Mode and 

Effects Analysis (FMEA) in its structured approach to the 

analysis of any technical system and the resulting 

standardized data model, while considering aspects that are 

crucial to capturing process and maintenance expertise in a 

way that is both intuitive to domain experts and the resulting 

information can be introduced as priors to Machine Learning 

algorithms. In effect, our proposed framework promises a 

consistent use of best practices in data-driven modeling for 

PHM use cases while enhancing their scalability, 

interpretability, and cost-effectiveness. 

 

1. INTRODUCTION 

The widespread adoption of data-driven technologies has 

opened new horizons in various industrial applications, 

among which prognostics and health monitoring (PHM) 

stands out as a critical area of focus. PHM refers to the use of 

advanced analytical tools and techniques for online 

monitoring of equipment, diagnostics of specific failure 

modes, and prognostics regarding the future performance or 

failure of machinery and equipment. By leveraging Machine 

Learning (ML) and other data-driven methodologies, PHM 

aims to enable the adoption of condition-based and predictive 

maintenance techniques. (Nunes et al., 2023) This promises 

to optimize maintenance schedules and minimize the level of 

risk resulting from the consequences of failures, such as 

operational downtime or reduced energy efficiency, thereby 

enhancing overall system reliability and efficiency.  

Original equipment manufacturers (OEMs), system 

integrators, maintenance and repair organizations (MROs) 

and operators of large fleets are each well-positioned to 

develop and deploy PHM tools for a specific class of 

equipment. To varying degrees, they possess: 

• access to in-operation data representative of the 

operational context, under which the equipment is 

operated, and to maintenance and service data, 

• an understanding of the equipment’s design and its 

dominant failure modes and the experience, allowing for 

reasonable prior assumptions regarding consequences 

and failure rates, 

• an understanding of the maintenance policies in place, 

and the requirements that determine how a PHM tool can 

be utilized to enable condition-based and predictive 

maintenance techniques. 

 

OEMs and system integrators in particular are in a unique 

position to integrate these solutions natively into equipment 

at the point of production, promising close alignment 
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between the design of the machinery and the PHM tool, 

including the use of the full range of available signals from 

intrinsic sensors and control signals in a system and the 

ability to embed sensors that cover potential “gray spots” of 

a system. In promising improved asset reliability and 

longevity as well as increased maintenance efficiency, they 

intend to create differentiating characteristics for their 

product, their spare parts offering, competitive advantages 

for their aftersales services, or entirely new business models 

around their core product (Potthoff et al., 2023). 

Reliability-centered maintenance (RCM) (Basson, 2019) and 

Total Productive Maintenance (TPM) (Wireman, 2004), 

among others provide robust theories on the circumstances, 

under which adopting a condition-based or predictive 

maintenance policy is both practical and cost-effective. 

However, given the imperfect nature of their predictions, the 

overall risk reduction potential of a PHM tool cannot be 

assessed without understanding how its deployment would 

impact the tasks realized by maintenance practitioners. This 

can be characterized by three key factors: 

• the accuracy of that information, with respect to the 

rates of true detections, false detections, and missed 

detections, influencing savings related to avoided failure 

consequences and the additional costs of unnecessary 

diagnostic tasks. 

• the prediction horizon characterized by the time 

between the detection of a potential failure and the 

observance of the corresponding functional failure, 

which corresponds to the P-F-interval for many failure 

patterns and determines the practicality of a proactive 

task. 

• the prescriptive value of the information provided to the 

maintenance practitioner – a result of both the choice of 

algorithm and the interpretability of its output - 

influencing how directed the resulting task is. 

 

Based on requirements stemming from a specific use case, 

and the skillsets and convictions of a particular team tasked 

with developing such systems, teams tend to make use of 

data-driven modeling techniques (classical statistical models 

and machine learning) or mechanistic modeling techniques to 

varying degrees. Mechanistic models are trusted for their 

explicit representation of domain knowledge and the 

interpretability of their outputs. However, with increasing 

complexity of a system and the uncertainty related to 

stochastic phenomena and incomplete knowledge of a 

system’s operational context and environment, the gap 

between model and reality renders purely mechanistic 

models useless for many use cases (Eker et al., 2016; 

Hagemeyer et al., 2022) 

Data-driven models, on the other hand, are able to capture 

complex relationships within data, given an incomplete 

representation of a specific asset’s history and operational 

context, can frequently be refitted to new data, and, in theory, 

require no prior assumptions (Liao et al., 2016). However, the 

outputs created by purely data-driven models rarely provide 

the prescriptive value that condition-based and predictive 

maintenance demands for and enjoy less trust among 

maintenance practitioners, due to their lack of interpretability 

(Vollert et al, 2021). Additionally, in the context of PHM, the 

utility of purely data-driven modeling is severely limited, due 

to the variability and quality of the data upon which these 

systems rely (Luo et al., 2020, Nunes et al., 2023) and their 

limited availability - particularly in industrial applications, 

where data sharing collaborations between different 

organizations remain an exception (Trauth et al., 2020).  

In practice, and with the exception of some examples of 

purely academically motivated research and proof-of-

concept (PoC) implementations, the underlying models of 

PHM tools are often hybrid in nature (Luo et al., 2020). On 

one hand, hybrid modelling benefits from the adaptability and 

ability of data-driven models to learn from incomplete 

information. On the other hand, it leverages domain 

knowledge to enhance output interpretability and introduce 

priors into the model that compensate for a data-driven 

model’s ability to generalize to operating contexts and 

failures, that are underrepresented in the available data. It is 

not surprising that the PHM community in particular has 

proposed noteworthy contributions to the field of hybrid 

machine learning, for instance the use of graph neural 

networks to learn representations of the semantic 

relationships of signals inherent to complex technical 

systems and to introduce known relationships as priors to a 

neural network (Battaglia et al., 2018, Zhao et al., 2020) or 

approaches designed to make connect available, yet 

incomplete or inaccurate physics-based models with ML-

based models (Gassner et al., 2014, Arias Chao et al., 2022) 

Our contribution does not challenge current fundamental 

contributions to hybrid modeling, nor does it extend the 

field’s state-of-the-art.  Rather, by proposing DeepFMEA as 

a standardized framework for the development and 

deployment of data-driven PHM tools our contribution 

recognizes the importance of these contributions, while 

strengthening the basis for their industrialization. To do so, 

in section 2 we first derive requirements for a potential 

framework from current challenges. In section 3, we propose 

(3.1) a standardized data model allowing for a structured 

representation of domain knowledge in PHM use cases, (3.2) 

a non-comprehensive overview of methods to harmonize this 

information in hybrid data-driven modeling approaches, and 

(3.3) an overview of methods to enrich model outputs with 

prescriptive information, to enhance their actionability. In 

section 4 we demonstrate an example of DeepFMEA usage 

in a practical use case based on monitoring and diagnostics 

for a hydraulic system (Helwig, 2015). Finally, section 5 

summarizes our findings from implementations of the 

framework in real-world PHM projects and discusses its 

current limitations and extension potentials. 
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2. CHALLENGES IN THE INDUSTRIALIZATION OF DATA-

DRIVEN PROGNOSTICS AND HEALTH MONITORING 

TOOLS 

In practice, the main effort of developing PHM solutions is 

not spend with model development. In order to deploy and 

operate data-driven PHM tools in a production environment, 

substantial development effort is introduced by the data and 

software engineering required to provide the following 

functions: 

• Data management encompasses IoT-connectivity, data 

pipelines, centralized or decentralized databases, and 

data processing services (data health checks, 

preprocessing, inference, and postprocessing) that 

enable the tool’s online operation. 

• Model monitoring & updates implements feedback 

loops that automate the continuous evaluation of the 

tool’s underlying model in production by relating its 

outputs to any available maintenance and operations data 

from a given asset. Furthermore, this encompasses the 

model training service, model registry, and decision 

logic required to adapt, update, and replace models in a 

production environment. Despite these capabilities 

falling into the category of MLOps (Kreuzberger et al., 

2023) arguably, in PHM, they are not only required to 

operate ML-models, but data-driven models in general. 

This is due to the fact that datasets, PHM tools are 

initially developed with, rarely reflect the full range of 

operating contexts and failures, that a fleet of assets may 

experience in operation (Zio, 2022) 

• The process integration layer includes reporting 

services and interfaces to enterprise software (i.e. ERP, 

CMMS) needed to make model outputs accessible to 

asset managers, field engineers, and maintenance 

professionals, i.e. as decision-support systems or 

automations. An additional function realized in the 

application layer of a PHM solution is to capture the 

maintenance and operations data required to realize the 

monitoring function. 

The heavy reliance on domain knowledge, described in 

section 1, combined with the fact that PHM tools frequently 

rely on the ingestion and fusion of control level (PLC), 

process management level (SCADA), and/or management 

level (MES) data (Mantravi et al., 2022) commonly results in 

highly customized data models and data pipelines. While 

most requirements of the aforementioned functions can be 

abstracted to a level, where they are agnostic to a specific 

PHM use case, this high degree of customization introduces 

additional requirements for the data management, MLOps, 

and process integration layers that interface with them. 

In effect, this inhibits the use of general-purpose software 

modules and increases the burden on the development team. 

Particularly the implementation of MLOps functions 

demands a highly specialized skillset (Nahar, 2022) which is 

rarely represented in PHM development teams. 

Considering the prevalence of hybrid modeling approaches 

described in section 1 and the challenges to their 

industrialization introduced in section 2, a framework for the 

development of data-driven PHM tools requires: 

• a consistent representation of domain knowledge 

commonly relevant to the PHM use case, such as: 

o semantic relationships between sensors and the 

elements of a complex technical system they are 

localized to, 

o prior knowledge that facilitates the diagnostic and 

prognostic functions of a PHM tool with respect to 

specific failure modes, i.e. virtual sensors, detection 

rules, and degradation variables, 

o prescriptive information, i.e. recommended 

diagnostic, proactive, or reactive maintenance tasks, 

given process anomalies or a specific failure mode 

is detected, 

• a data structure and systematic approach that connects 

in-operation data, maintenance data, and domain 

expertise via hybrid modeling approaches, yet 

maintaining the flexibility to integrate problem-specific 

approaches or advances in the state-of-the-art, 

• a common approach towards how data-driven 

monitoring tools for the purposes of monitoring, 

diagnostics, and prognostics are managed in production, 

to facilitate the efficient use of general-purpose 

technology, 

• a quantitative assessment of monitoring, diagnostics, and 

prognostics tools that quantifies their impact in terms of 

risk-reduction, considering the imperfect nature and the 

inherent uncertainty of data-driven model predictions. 

3. CONCEPT 

DeepFMEA, our proposed framework, does not draw its 

name being an implementation the Failure Modes and Effects 

Analysis (FMEA) (MIL-STD-1629A, 1980, Rausand et al., 

2003) nor is it a data-driven extension to the FMEA process, 

as proposed by (Ervural & Ayaz, 2023). We draw inspiration 

from: 

• the strong intersection between the data required by the 

FMEA and the information commonly used as domain 

expertise in the modeling process, 
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• the systematic process of capturing this data within an 

FMEA, 

• the structured relational data model suggested by the 

analysis, which has been implemented in database 

schemas by numerous vendors of specialized FMEA-

software. 

This section briefly outlines the abstract data model 

implemented by DeepFMEA (3.1), before presenting a non-

comprehensive collection of approaches to systematically 

utilize this information in the modeling process (3.2), and 

enriching model outputs with prescriptive information and 

assessing their impact on risk (3.3). 

3.1. Data models 

A System Element reflects the part of a system at which a 

failed state (the inability of a system to fulfill its intended 

function) can be localized at. Destructuring a complex system 

into system elements results in a hierarchical data structure, 

frequently resembling the subsystems, assemblies, 

components, or parts of its physical twin. The root system 

element corresponds to the system modelled in the PHM 

project. 

An Asset corresponds to a physical entity of the root system 

element. 

A Signal declares any class of in-operation data captured in a 

technical system, either from intrinsic sensors, control 

signals, or external sensors retrofitted to the system. A Signal 

references one or multiple System Elements.  

A Measurement contains the time-series associated 

referencing a Signal of an Asset in a given time interval. 

Whenever a system’s process is cyclic in nature, it is a good 

practice to define Measurements along the boundaries of 

cycles, since this already introduces strong normalization to 

the time-series simplifying their subsequent processing. 

A Segment references the method and its parameters required 

to retrieve a given recurring pattern, i.e. corresponding to a 

specific step in a process or a procedure in the operation of a 

machine. It is model-agnostic. The underlying segmentation 

model could be a simple rule, a motif detection algorithm or 

even a neural network. 

A Virtual Sensor defines the computation of a property of one 

or multiple Measurements, which is informed by domain 

knowledge. Virtual Sensors are commonly used in PHM 

projects due to their enhanced interpretability, expressiveness 

and better generalization properties compared to raw signals. 

An example of a Virtual Sensor in a shaft component is the 

“1X Frequency”. Elevated levels are commonly (but not 

exclusively) associated with its misalignment. In analogy to 

a Signal, it references one or multiple System Elements. The 

virtual Measurements obtained can be scalar, vectorial or 

tensorial. The computation of a Virtual Sensor is stored as a 

graph of atomic Operations, that reference Signals, 

Segments, or other Virtual Sensors. Section 3.2 introduces 

multiple concepts of how Virtual Sensors can be used in 

monitoring, diagnostics, and prognostics Detection Methods. 

A Failure Mode defines one form in which a System Element 

can fail. In order to enable an assessment of risk and the risk-

Figure 1: Simplified UML Diagram describing the data models used within the DeepFMEA Framework. 
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reduction potential corresponding to the deployment of a 

Detection Method, a Failure Mode includes properties that 

quantify the (economic) consequences of a Failure Incident. 

For the same purpose, due to the fact that Failure Incidents 

are rare in many PHM use cases, in practice, prior 

assumptions regarding the failure rate may have to be 

introduced as additional properties. Reasonable assumptions 

should be set in agreement between multiple domain experts. 

An Intervention stores a prescriptive instruction directed to 

an asset’s operator or maintainer, given the occurrence of a 

specific Failure Mode. An Intervention can be a diagnostic, 

reactive, or proactive task.  

A Failure Incident stores a detected or observed occurrence 

of a Failure Mode for a given Asset. In order to monitor the 

performance of a given Detection Method, its properties 

allow determining whether the Failure Incident was detected 

prior to its occurrence, remained undetected or was a false 

alarm. 

A Detection Method references any monitoring, diagnostic, 

or prognostic model developed and deployed as part of the 

PHM tool. It carries references to both Signals and Virtual 

Sensors, that it relies on as inputs, and to the System Elements 

(in the case of monitoring) or Failure Modes (in the case of 

diagnostics and prognostics). 

3.2. Systematic Use of Domain Knowledge in Detection 

Methods 

Below, we present a selection of methods that illustrate how 

the data mentioned earlier can be systematically leveraged to 

develop data-driven PHM tools. Instead of categorizing these 

methods by specific algorithm classes, we organize our 

discussion around the typical progression of objectives in 

PHM projects. Projects often start with Proof of Concepts 

(PoCs) that focus primarily on monitoring the operation of 

assets by detecting deviations from normal processes. They 

then gradually extend the tool's capabilities to diagnose high-

risk failure modes and, eventually, to forecast potential 

incidents. By examining the data requirements for each of 

these objectives, DeepFMEA ensures that a PHM tool can be 

expanded without significant alterations to its data and 

software architecture and the high-quality data, that is 

particularly important for diagnostics and prognostics, is 

collected from the onset of the project. 

 

3.2.1 Monitoring 

Monitoring targets the detection of anomalous behavior in a 

process without pinpointing specific failure modes. employs 

anomaly detection algorithms that leverage readily available 

data from normal operations. Due to the complexity and high 

dimensionality of data from industrial equipment, direct 

application of data-driven models often leads to poor 

generalization. Moreover, it inhibits the ability to localize 

anomalies within a large system. Therefore, it is common 

practice to filter data and distill only the most pertinent 

information.  

The data model defines the relationships between the 

Detection Method, the System Element(s) within its scope, 

and the associated Signals. It permits a preselection of data 

relevant to the monitoring objective while eliminating signals 

that do not enhance the monitoring tool's performance 

because they lack informational value about the focused 

System Elements. 

Moreover, Virtual Sensors, associated with the System 

Elements under observation, can be input to anomaly 

detection models as Health Indicators. These indicators 

extract crucial information from the dense, noisy, and often 

overly detailed sensor data collected from real-world assets, 

ensuring the monitoring process is both efficient and 

effective. 

3.2.2 Diagnostics 

Unlike monitoring, diagnostic tools offer operators and 

maintainers precise information that identifies a failure mode 

or several probable ones. Building on monitoring concepts, 

the data model's embedded domain expertise can be further 

utilized for diagnostic challenges. 

Diagnostics typically takes the form of a classification 

problem, where Failure Modes defined in the data model 

represent the classes. Implementing this model in a database 

together with the data pipelines, that make the data accessible 

from its sources, results in a scalable data management 

system, aligning Failure Incidents with their respective 

Failure Mode. The continuous collection of failure data not 

only provides the data required to fit the diagnostic Detection 

Method's model or evaluate its performance metrics; it also 

creates the basis for automated monitoring, adaption, and 

updating of any data-driven models in a production 

environment.  

Diagnostics use cases often face a notable lack of Failure 

Incidents, particularly for high-risk Failure Modes. To 

address this, PHM projects might rely on strong assumptions, 

like establishing explicit or inferred thresholds on Virtual 

Sensor values for a Failure Mode's occurrence, based on 

expert consensus. 

Additionally, section 4 illustrates a simplified example 

showing how data on failure rates, consequences, and 

interventions can evaluate a Detection Method's risk 

reduction impact upon deployment. 

3.2.3 Prognostics 

Prognostics aims to forecast specific Failure Modes by 

estimating the remaining useful life (RUL) of a System 

Element. Although data-driven models for prognostics have 

been a focal point in PHM research, their practical impact on 

industrial PHM tools remains minimal. The prominence of 

research in this area within parts of the PHM community 
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might give the impression of their significant role, but in 

practice, the utility of RUL predictions is often limited. 

Despite their allure, they may be of limited value for many 

Failure Modes where monitoring or diagnostic tools can 

identify potential failures well in advance of the functional 

failure, allowing for their proactive management. 

Furthermore, for Failure Modes governed by stochastic 

events, is a futile endeavor. 

Creating effective data-driven prognostics models requires 

extensive datasets, including both numerous Failure 

Instances and comprehensive in-operation data on the 

degradation trajectory. Such complete datasets are 

exceptionally rare in practice. However, a data management 

system implementing the DeepFMEA data model has the 

technical capability to compile datasets fulfilling these 

stringent criteria. When a Failure Mode is thoroughly 

understood, domain experts can identify Virtual Sensors as 

degradation variables, feeding into models that estimate 

RUL. 

 

3.3. Enhancing the Prescriptive Value of PHM Outputs 

Data-driven models often face criticism for their lack of 

interpretability. However, the rich contextualization the 

DeepFMEA offers for a Detection Method can significantly 

enhance the model's outputs. By adding context data and 

prescriptive information before presenting results to 

operators and maintainers, the trustworthiness of a PHM tool 

is improved, making it a more valuable decision-support 

system. 

When a deviation from the healthy process is detected, a 

monitoring tool can use the available information on the 

System Element(s) referenced by the Detection Method to 

provide suggestions for its origins and reduce the amount of 

time for its localization. 

The presentation of context data can mirror the hierarchical 

structure of the physical system, allowing operators and 

maintainers to intuitively trace anomalies from a system-

wide perspective down to specific components. This 

structured and visualized approach aligns with the natural 

process of investigating anomalies. 

Furthermore, diagnostic, proactive, and reactive 

Interventions tied to particular Failure Modes can be directly 

communicated to the operator or maintainer. Alternatively, 

they can be seamlessly integrated into existing processes, 

automatically initiating the appropriate workflows. This 

integration facilitates a more effective and timely response to 

potential issues. 

4. REFERENCE USE CASE: HYDRAULIC SYSTEM DATASET 

To demonstrate the use of the proposed DeepFMEA 

framework, we show the integration of Helwig’s hydraulic 

system dataset (Helwig, 2018). This dataset was obtained by 

a hydraulic test rig where different degradation and multiple 

failure modes were simulated. The experimental setup, 

consisting of a working circuit including a variable load and 

a cooling and filtration circuit can be found in Figure 1. The 

rig is equipped with pressure, temperature, vibration and 

volume flow sensors at different components. Virtual 

Sensors, Features and analytics methods to detect the 

simulated Failure Modes are proposed (Helwig, 2015).  

Figure 2. Hydraulic system testbench used to obtain training data for (Helwig, 2018). 
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We translate the  Condition Monitoring approach described 

in Helwig’s paper into our DeepFMEA framework by 

describing and linking the system-components with sensors 

using the System Element and Signal data models. We then 

add the expert knowledge found in the form of Virtual 

Sensors and known Failure Modes as well as feature 

engineering performed in the paper. It should be noted that 

both feature engineering as well as the virtual sensors can be 

united into the same data-model Virtual Sensor within our 

framework. 

We start by describing the physical machine as a tree-

structure of System Elements. We then continue to link all 

available Signals to their respective System Element. This 

hierarchical linking for example allows for the aggregation of 

Signals while also considering child components. Even 

though EPS1and VS1 are not referencing the exact same 

System Element, they can all be aggregated to the parent 

component “Pump”. 

After describing the hydraulic rig within the proposed 

framework, we continue by adding the data models 

describing the condition-based monitoring solutions. The 

first step is to define the different Failure Modes to be 

detected. In this case, they are defined by the Failure Modes 

the experimental setup is able to simulate: Cooling power 

decrease, Switching characteristic degradation of the valve, 

internal leakage of the pump and gas leakage of one of the 

accumulators. As seen in Table 1, referencing the 

corresponding system element is straightforward for each of 

the Failure Modes.  

In order to improve the detection performance of the 

Detection Methods, Helwig 2015 preprocesses the raw sensor 

data by defining data Segments as well as Virtual Sensors. 

Both are part of the expert knowledge enriching PHM 

solutions. The segments, or “intervals”, are defined by the 

variable load on the test rig, the virtual sensors consist of 

physical relevant knowledge about cooler (cooling 

efficiency, cooling power), using in depth engineering 

knowledge like the heat transport equation of oil.  

Table 5 shows how both feature engineering and virtual 

sensors can be united in the same data model Virtual Sensor 

with cooling efficiency and two median features as an 

example. As described in the original paper (Helwig, 2015), 

the cooling efficiency virtual sensor is the ratio between the 

oil temperature difference before and after the cooler and the 

difference of the oil temperature before the cooler and the 

ambient temperature. We split the computation into multiple 

atomic mathematical operations, i.e. the calculation of both 

temperature differences followed by the building the ratio. 

We apply the virtual sensor on segment 1, as it depicts the 

whole working cycle.  

Incorporating feature engineering in the data model works 

analogously: A mathematical atomic operation as well as an 

input and a segment are defined. The input can either be 

another Virtual Sensor or a Signal.  

With the equipment, signals and expert knowledge described 

in a structured, contextualized manner, every information 

needed to create PHM solutions for the hydraulic test rig from 

a technical point of view is now present in the DeepFMEA 

framework. Figure 4 shows an exemplary visualization of an 

unsupervised machine learning model trained to perform 

Diagnostics for the defined Failure Modes, where the labels 

of the dataset, where incorporated as Failure Incidents and 

Interventions. 
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Table 1. Simplified System Element data-model. 

 

Name Parent (FK) 

Hydraulic-System NULL 

Working-Circuit Hydraulic-System 

Pump Working-Circuit 

Motor Pump 

Valve Working-Circuit 

Variable Load Working-Circuit 

Accumulators Cooling & Filtration 

Cooling & Filtration Working-Circuit 

Cooler Cooling & Filtration 

 

Table 2: Simplified signal data-model.  

 

Table 3. Simplified Segment data-model. 

 

Table 4. Simplified Failure Mode data model. 

 

Table 5. Simplified Virtual Sensor data-model.  

 

 

 

 

 

Name System Element (FK) Sampling-Rate 

EPS1 Motor 100 Hz 

VS1 Pump 1 Hz 

PS1 Valve 100 Hz 

… 

TS3 Cooler 1 Hz 

TS4 Cooler 1 Hz 

Name Start End 

INT1 0.00s 60.00s 

… 

INT13 50.01 60.00s 

Name System Element (FK) 

Cooling Power Decrease Cooler 

Internal Leakage Pump 

Gas Leakage Accumulators 

Switching char. degradation Valve 

Name Inputs Operator 

ΔTCool 
(T3, INT1)  

(T4, INT1) 
DIFF 

ΔTAmb 
(T3, INT1) 

(TAmb, INT1) 
DIFF 

CE 
ΔTCool 

ΔTAmb 
DIV 

Median CE 3 (CE, INT3) ME Figure 4. Visualization of an unsupervised, hybrid 

machine learning model developed and stored in the 

DeepFMEA framework. It was used for diagnostics of 

the hydraulic system dataset (Helwig, 2018). 
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As described in detail, the DeepFMEA framework also 

enables in quantifying and evaluating the risk reduction 

potential of developed Detection Methods. Even though 

Helwig 2015 does not provide the information needed to fully 

evaluate the risk reduction potential, we still give an outlook 

of how such an evaluation could be performed. 

 

We introduce the following variables: 

 

𝑅𝐹: The expected failure rate of a failure mode, i.e. the 

number of faults per asset per year 

𝐶𝐹: Cost of downtime, including cost of spare parts and 

interventions needed for repair 

𝐶𝐷𝐼: Cost of a diagnostic intervention, needed to diagnose if 

a detected failure incident is an actual failure 

𝐶𝑃𝐼: Cost of a proactive intervention, needed to prevent an 

upcoming failure incident 

𝑇𝑃𝑅, 𝐹𝑃𝑅, 𝐹𝑁𝑅: True positive rate, false positive rate and 

false negative rate of the developed detection method 

 

We can then define the risk reduction potential as the 

difference between the total cost without implementing the 

detection method and the total cost with the detection 

method: 

 

𝑅𝑖𝑠𝑘 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  𝑅𝐹 ∗  𝐶𝐹  
        − 𝑅𝐹 ∗ (𝐶𝐹 ∗ 𝐹𝑁𝑅 +  𝐶𝐷𝐼 ∗ 𝐹𝑃𝑅 + (𝐶𝐷𝐼 +  𝐶𝑃𝐼) ∗ 𝑇𝑃𝑅 

 

5. CONCLUSION: APPLICATION IN REAL-LIFE INDUSTRIAL 

SETTINGS 

DeepFMEA introduces a novel abstraction to the design of 

data-driven PHM tools. It aims to: 

• Enhance PHM development teams by incorporating best 

practices for systematically capturing and leveraging 

existing domain knowledge, 

• Foster efficient collaboration among process experts, 

maintenance professionals, and data specialists in PHM 

projects, 

• Streamline development workflows through 

standardization, which is essential for reusing 

specialized data management and MLOps modules. This 

standardization alleviates the burden of custom 

developments on PHM project budgets. 

 

The application of this framework in real-world PHM 

projects across three equipment manufacturers has provided 

valuable insights: 

 

• Application-agnostic: Tested in the steel, food & 

beverage, and machining industries, the framework's 

underlying data model has proven to be applicable for a 

broad range of similarly motivated use cases across 

different applications. 

• Model-agnostic: Each implementation, whether 

employing simple dynamic thresholding techniques, 

classical ML algorithms and or advanced algorithms 

such as graph neural networks, benefited from 

DeepFMEA’s abstraction of the detection method by 

enabling the use of reusable MLOps modules. 

• Extensible: The framework accommodated various 

initial requirements, from simple monitoring to 

advanced diagnostics, offering clear pathways for 

evolving PHM tools to increase the prescriptive value of 

their outputs as more data becomes available. 

• Flexible: It could be implemented both in new (“green 

field”) projects and as an extension to existing data 

structures. 

• Automation: Standardizing the capture and 

management of domain knowledge has facilitated the 

development of a graphical user interface, making PHM 

more accessible to non-data specialists, and reducing 

repetitive tasks for data specialists. 

 

However, our experiences also highlight areas for 

improvement and expansion: 

• Risk Assessment Simplifications: The current 

framework introduces strong simplifications for risk 

quantification and the assessment of the risk-reduction 

potential of PHM tools. It does not account for non-

economic risks such as environmental and safety 

hazards. Moreover, it overlooks the multifaceted 

economic benefits of PHM, including waste reduction, 

energy efficiency, and productivity gains. A more 

refined model is necessary to accurately capture these 

aspects. 

• MLOps: While DeepFMEA promotes standard MLOps 

practices for maintaining PHM tool trustworthiness, the 

unique challenges of PHM, such as limited benchmark 

data, organizational challenges in creating reliable data 

feedback loops to operators and maintainers, and varied 

operational contexts, demand more nuanced solutions. 

Addressing these challenges with innovative approaches 

should be a priority for the PHM research community 

and development teams to encourage broader adoption 

of data-driven PHM tools. 
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